Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 550
Filtrar
1.
Front Immunol ; 15: 1369243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469307

RESUMO

Severe congenital neutropenia (SCN) is caused by germline mutations, most commonly in ELANE, impacting neutrophil maturation and leading to high risk of life-threatening infections. Most patients with ELANE-mutant SCN can achieve safe neutrophil counts with chronic Granulocyte-Colony Stimulating Factor (G-CSF). However, up to 10% of patients have neutropenia refractory to G-CSF and require allogeneic stem cell transplant. Traditional conditioning for these patients includes busulfan and cyclophosphamide which is associated with significant toxicities. We present five patients with SCN without myeloid malignancy transplanted using a reduced toxicity regimen of busulfan, fludarabine and thymoglobulin. 5 pediatric patients with SCN underwent matched sibling donor bone marrow transplant (MSD-BMT) between 2014-2022 on or per CHP14BT057 (NCT02928991), a prospective, single center trial testing elimination of cyclophosphamide from conditioning in pediatric patients with single lineage inherited BMF syndromes. All patients had MSDs and no evidence of MDS. Conditioning consisted of PK-adjusted busulfan, fludarabine, and thymoglobulin, with calcineurin inhibitor and mycophenolate mofetil GVHD prophylaxis. With median follow-up of 48.4 months, overall and event-free survival were 100%. There was no acute GVHD and one instance of chronic limited GVHD. Patients exhibited >95% donor myeloid chimerism at 5 years post-BMT. Two patients experienced CMV reactivation without end-organ disease, and no other viral reactivation or significant infections occurred. MSD-BMT with reduced toxicity myeloablation for SCN provides excellent outcomes while minimizing toxicity. These data suggest that busulfan, fludarabine, and ATG can be considered an efficacious, low-toxicity standard of care regimen for patients with SCN undergoing MSD-BMT.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Neutropenia , Neutropenia/congênito , Humanos , Criança , Transplante de Medula Óssea/efeitos adversos , Síndrome Congênita de Insuficiência da Medula Óssea , Bussulfano/uso terapêutico , Bussulfano/farmacologia , Transplante de Células-Tronco Hematopoéticas/métodos , Irmãos , Estudos Prospectivos , Neutropenia/complicações , Ciclofosfamida/uso terapêutico , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Fator Estimulador de Colônias de Granulócitos/uso terapêutico
2.
FASEB J ; 38(4): e23478, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38372965

RESUMO

Carnitine derivatives of disease-specific acyl-CoAs are the diagnostic hallmark for long-chain fatty acid ß-oxidation disorders (lcFAOD), including carnitine shuttle deficiencies, very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD), long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) and mitochondrial trifunctional protein deficiency (MPTD). The exact consequence of accumulating lcFAO-intermediates and their influence on cellular lipid homeostasis is, however, still unknown. To investigate the fate and cellular effects of the accumulating lcFAO-intermediates and to explore the presence of disease-specific markers, we used tracer-based lipidomics with deuterium-labeled oleic acid (D9-C18:1) in lcFAOD patient-derived fibroblasts. In line with previous studies, we observed a trend towards neutral lipid accumulation in lcFAOD. In addition, we detected a direct connection between the chain length and patterns of (un)saturation of accumulating acylcarnitines and the various enzyme deficiencies. Our results also identified two disease-specific candidate biomarkers. Lysophosphatidylcholine(14:1) (LPC(14:1)) was specifically increased in severe VLCADD compared to mild VLCADD and control samples. This was confirmed in plasma samples showing an inverse correlation with enzyme activity, which was better than the classic diagnostic marker C14:1-carnitine. The second candidate biomarker was an unknown lipid class, which we identified as S-(3-hydroxyacyl)cysteamines. We hypothesized that these were degradation products of the CoA moiety of accumulating 3-hydroxyacyl-CoAs. S-(3-hydroxyacyl)cysteamines were significantly increased in LCHADD compared to controls and other lcFAOD, including MTPD. Our findings suggest extensive alternative lipid metabolism in lcFAOD and confirm that lcFAOD accumulate neutral lipid species. In addition, we present two disease-specific candidate biomarkers for VLCADD and LCHADD, that may have significant relevance for disease diagnosis, prognosis, and monitoring.


Assuntos
Cardiomiopatias , Síndrome Congênita de Insuficiência da Medula Óssea , Erros Inatos do Metabolismo Lipídico , Lipidômica , Doenças Mitocondriais , Miopatias Mitocondriais , Proteína Mitocondrial Trifuncional/deficiência , Doenças Musculares , Doenças do Sistema Nervoso , Rabdomiólise , Humanos , Doenças Mitocondriais/diagnóstico , Carnitina , Cisteamina , Lipídeos
3.
Leuk Res ; 137: 107441, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301422

RESUMO

Inherited bone marrow failure syndromes and germline predisposition syndromes (IBMFS/GPS) are associated with increased risk for hematologic malignancies, particularly myeloid neoplasms, such as myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML). The diagnosis of MDS in these syndromes poses difficulty due to frequent bone marrow hypocellularity and the presence of some degree of dysplastic features related to the underlying germline defect causing abnormal maturation of one or more cell lines. Yet, the diagnosis of MDS is usually associated with a worse outcome in several IBMFS/GPS. Criteria for the diagnosis of MDS in IBMFS/GPS have not been standardized with some authors suggesting a mixture of morphologic, cytogenetic, and genetic criteria. This review highlights these challenges and suggests a more standardized approach to nomenclature and diagnostic criteria.


Assuntos
Doenças da Medula Óssea , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Doenças da Medula Óssea/genética , Doenças da Medula Óssea/complicações , Doenças da Medula Óssea/patologia , Síndrome Congênita de Insuficiência da Medula Óssea/complicações , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Leucemia Mieloide Aguda/genética , Predisposição Genética para Doença , Células Germinativas/patologia
4.
J Pediatr Hematol Oncol ; 46(3): e214-e219, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408162

RESUMO

BACKGROUND: Multisystemic findings of inherited bone marrow failure syndromes may cause difficulty in diagnosis. Exome sequencing (ES) helps to define the etiology of rare diseases and reanalysis offers a valuable new diagnostic approach. Herein, we present the clinical and molecular characteristics of a girl who was referred for cytopenia and frequent infections. CASE REPORT: A 5-year-old girl with cytopenia, dysmorphism, short stature, developmental delay, and myopia was referred for genetic counseling. Reanalysis of the ES data revealed a homozygous splice-site variant in the DNAJC21 (NM_001012339.3:c.983+1G>A), causing Shwachman-Diamond Syndrome (SDS). It was shown by the RNA sequencing that exon 7 was skipped, causing an 88-nucleotide deletion. CONCLUSIONS: Precise genetic diagnosis enables genetic counseling and improves patient management by avoiding inappropriate treatment and unnecessary testing. This report would contribute to the clinical and molecular understanding of this rare type of SDS caused by DNAJC21 variants and expand the phenotypic features of this condition.


Assuntos
Doenças da Medula Óssea , 60427 , Feminino , Humanos , Pré-Escolar , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Exoma/genética , Síndrome de Shwachman-Diamond , Homozigoto , Doenças da Medula Óssea/diagnóstico , Doenças da Medula Óssea/genética
5.
Blood Adv ; 8(7): 1667-1682, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38286463

RESUMO

ABSTRACT: Congenital neutropenia (CN) is a genetic disorder characterized by persistent or intermittent low peripheral neutrophil counts, thus increasing susceptibility to bacterial and fungal infections. Various forms of CN, caused by distinct genetic mutations, exhibit differential responses to granulocyte colony-stimulating factor (G-CSF) therapy, with the underlying mechanisms not fully understood. This study presents an in-depth comparative analysis of clinical and immunological features in 5 CN patient groups (severe congenital neutropenia [SCN]1, SCN3, cyclic neutropenia [CyN], warts, hypogammaglobulinaemia, infections and myelokathexis [WHIM], and Shwachman-Bodian-Diamond Syndrome [SBDS]) associated with mutations in ELANE, HAX1, CXCR4, and SBDS genes. Our analysis led to the identification of 11 novel mutations in ELANE and 1 each in HAX1, CXCR4, and G6PC3 genes. Investigating bone marrow (BM) granulopoiesis and blood absolute neutrophil count after G-CSF treatment, we found that SCN1 and SCN3 presented with severe early-stage disruption between the promyelocyte and myelocyte, leading to a poor response to G-CSF. In contrast, CyN, affected at the late polymorphonuclear stage of neutrophil development, showed a strong G-CSF response. WHIM, displaying normal neutrophil development, responded robustly to G-CSF, whereas SBDS, with moderate disruption from the early myeloblast stage, exhibited a moderate response. Notably, SCN1 uniquely impeded neutrophil development, whereas SCN3, CyN, WHIM, and SBDS also affected eosinophils and basophils. In addition, SCN1, SCN3, and CyN presented with elevated serum immunoglobulins, increased BM plasma cells, and higher A Proliferation-Inducing Ligand levels. Our study reveals a strong correlation between the stage and severity of granulocyte development disruption and the efficacy of G-CSF therapy.


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea , Eosinófilos , Fator Estimulador de Colônias de Granulócitos , Neutropenia/congênito , Humanos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Mutação , Proteínas Adaptadoras de Transdução de Sinal
8.
J Mol Med (Berl) ; 102(1): 95-111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37987775

RESUMO

Diabetic cardiomyopathy describes heart disease in patients with diabetes who have no other cardiac conditions but have a higher risk of developing heart failure. Specific therapies to treat the diabetic heart are limited. A key mechanism involved in the progression of diabetic cardiomyopathy is dysregulation of cardiac energy metabolism. The aim of this study was to determine if increasing the expression of medium-chain acyl-coenzyme A dehydrogenase (MCAD; encoded by Acadm), a key regulator of fatty acid oxidation, could improve the function of the diabetic heart. Male mice were administered streptozotocin to induce diabetes, which led to diastolic dysfunction 8 weeks post-injection. Mice then received cardiac-selective adeno-associated viral vectors encoding MCAD (rAAV6:MCAD) or control AAV and were followed for 8 weeks. In the non-diabetic heart, rAAV6:MCAD increased MCAD expression (mRNA and protein) and increased Acadl and Acadvl, but an increase in MCAD enzyme activity was not detectable. rAAV6:MCAD delivery in the diabetic heart increased MCAD mRNA expression but did not significantly increase protein, activity, or improve diabetes-induced cardiac pathology or molecular metabolic and lipid markers. The uptake of AAV viral vectors was reduced in the diabetic versus non-diabetic heart, which may have implications for the translation of AAV therapies into the clinic. KEY MESSAGES: The effects of increasing MCAD in the diabetic heart are unknown. Delivery of rAAV6:MCAD increased MCAD mRNA and protein, but not enzyme activity, in the non-diabetic heart. Independent of MCAD enzyme activity, rAAV6:MCAD increased Acadl and Acadvl in the non-diabetic heart. Increasing MCAD cardiac gene expression alone was not sufficient to protect against diabetes-induced cardiac pathology. AAV transduction efficiency was reduced in the diabetic heart, which has clinical implications.


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea , Diabetes Mellitus , Cardiomiopatias Diabéticas , Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Doenças Musculares , Humanos , Masculino , Camundongos , Animais , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/terapia , Terapia Genética , RNA Mensageiro/genética
10.
J Mol Diagn ; 26(3): 191-201, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38103590

RESUMO

Inherited bone marrow failure syndromes (IBMFS) are a group of heterogeneous disorders that account for ∼30% of pediatric cases of bone marrow failure and are often associated with developmental abnormalities and cancer predisposition. This article reports the laboratory validation and clinical utility of a large-scale, custom-designed next-generation sequencing panel, Children's Hospital of Philadelphia (CHOP) IBMFS panel, for the diagnosis of IBMFS in a cohort of pediatric patients. This panel demonstrated excellent analytic accuracy, with 100% sensitivity, ≥99.99% specificity, and 100% reproducibility on validation samples. In 269 patients with suspected IBMFS, this next-generation sequencing panel was used for identifying single-nucleotide variants, small insertions/deletions, and copy number variations in mosaic or nonmosaic status. Sixty-one pathogenic/likely pathogenic variants (54 single-nucleotide variants/insertions/deletions and 7 copy number variations) and 24 hypomorphic variants were identified, resulting in the molecular diagnosis of IBMFS in 21 cases (7.8%) and exclusion of IBMFS with a diagnosis of a blood disorder in 10 cases (3.7%). Secondary findings, including evidence of early hematologic malignancies and other hereditary cancer-predisposition syndromes, were observed in 9 cases (3.3%). The CHOP IBMFS panel was highly sensitive and specific, with a significant increase in the diagnostic yield of IBMFS. These findings suggest that next-generation sequencing-based panel testing should be a part of routine diagnostics in patients with suspected IBMFS.


Assuntos
Anemia Aplástica , Doenças da Medula Óssea , Hemoglobinúria Paroxística , Humanos , Criança , Anemia Aplástica/diagnóstico , Anemia Aplástica/genética , Doenças da Medula Óssea/diagnóstico , Doenças da Medula Óssea/genética , Síndrome Congênita de Insuficiência da Medula Óssea , Variações do Número de Cópias de DNA/genética , Reprodutibilidade dos Testes , Hemoglobinúria Paroxística/diagnóstico , Hemoglobinúria Paroxística/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nucleotídeos
11.
J Pediatr Hematol Oncol ; 46(2): e199-e201, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113221

RESUMO

Bloom syndrome (BS) is a rare autosomal recessive inherited disorder. Patients with BS have photosensitivity, telangiectatic facial erythema, and stunted growth. They usually have mild microcephaly, and distinctive facial features such as a narrow, slender face, micrognathism, and a prominent nose. Kostmann disease (KD) is a subgroup of severe congenital neutropenias. The diagnosis of severe congenital neutropenia is based on clinical symptoms, bone marrow findings, and genetic mutation. Here, we report a female patient with a triangular face, nasal prominence, and protruding ears presenting with recurrent infections and severe neutropenia. Molecular genetic testing revealed a compound heterozygous variant in the HCLS-1-associated protein X-1 gene [(c.130_131insA) p.(trp44*), c.430 dup(p.Val144fs)] and a new homozygous variant in Bloom Syndrome RecQ like helicase gene [c.2074+2T>C p.(?)]. She was diagnosed with both BS and KD. To the best of our knowledge, this is the first case of coexisting BS and KD in a patient ever reported.


Assuntos
Síndrome de Bloom , Neutropenia , Neutropenia/congênito , Humanos , Feminino , Síndrome de Bloom/complicações , Síndrome de Bloom/genética , Síndrome de Bloom/diagnóstico , Síndrome Congênita de Insuficiência da Medula Óssea , Neutropenia/complicações , Neutropenia/genética , Mutação
14.
Hematology Am Soc Hematol Educ Program ; 2023(1): 141-148, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066882

RESUMO

Inherited bone marrow failure syndromes (IBMFS) encompass a group of rare genetic disorders characterized by bone marrow failure, non-hematologic multisystemic comorbidities, disease defining congenital anomalies, and a susceptibility to myelodysplastic syndrome, acute myeloid leukemia, and in some instances solid tumors. The most common IBMFS include Fanconi anemia, Shwachman-Diamond syndrome, Diamond-Blackfan anemia, and telomere biology disorders/ dyskeratosis congenita. Allogeneic hematopoietic stem cell transplant (HCT) is a well-established curative treatment to correct the hematological manifestations but does not halt or reverse the nonhematological complications and may hasten them. With advances in HCT and in our ability to care for patients with IBMFS, an increasing number of survivors are making it imperative to not only diagnose but also treat late effects from the pre-, peri-, and post-HCT course and complications relating to the natural history of the syndrome. As the field of HCT evolves to allow for the incorporation of alternate graft sources, for expansion of donor options to include unrelated and mismatched donors, and for use of reduced-intensity conditioning or reduced toxicity myeloablative regimens, we have yet to determine if these advances modify the disease-specific course. While long-term outcomes of these patients are often included under one umbrella, this article seeks to address disease-specific post-HCT outcomes within IBMFS.


Assuntos
Anemia Aplástica , Doenças da Medula Óssea , Transplante de Células-Tronco Hematopoéticas , Hemoglobinúria Paroxística , Humanos , Anemia Aplástica/genética , Doenças da Medula Óssea/terapia , Doenças da Medula Óssea/diagnóstico , Medula Óssea/patologia , Síndrome Congênita de Insuficiência da Medula Óssea/complicações , Hemoglobinúria Paroxística/diagnóstico , Hemoglobinúria Paroxística/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Progressão da Doença
15.
Hematology Am Soc Hematol Educ Program ; 2023(1): 135-140, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066900

RESUMO

Hematopoietic cell transplantation (HCT) can cure blood dyscrasias and reduce the risk of hematologic cancers in patients with inherited bone marrow failure syndromes (IBMFS). However, because of its high mortality rate, HCT is generally reserved until patients with IBMFS manifest life-threatening cytopenias or myeloid malignancy, at which point outcomes are poor. Screening tests that accurately predict transformation and enable timely intervention are lacking. These unknowns and risks limit the use of HCT in patients with IBMFS, sometimes until significant disease-related sequelae have occurred. A major goal for IBMFS is to reduce cellular therapy-related complications to the point that earlier intervention can be considered before significant transfusion exposure, occurrence of comorbidities, or malignant transformation. In recent decades, disease-specific allogeneic HCT trials have yielded significant improvements in outcomes in IBMFS conditions, including Fanconi anemia and dyskeratosis congenita. This is in large part due to marked reductions in conditioning intensity to address the increased sensitivity of these patients to cytotoxic chemotherapy and radiation. The success of these approaches may also indicate an ability to leverage intrinsic fitness defects of hematopoietic stem and progenitor cells across IBMFS disorders. Now with advances in tracking somatic genetic evolution in hematopoiesis and tailored minimal intensity conditioning regimens, this question arises: is it time for preventative HCT for IBMFS?


Assuntos
Anemia Aplástica , Doenças da Medula Óssea , Transplante de Células-Tronco Hematopoéticas , Hemoglobinúria Paroxística , Pancitopenia , Humanos , Anemia Aplástica/genética , Doenças da Medula Óssea/terapia , Doenças da Medula Óssea/diagnóstico , Síndrome Congênita de Insuficiência da Medula Óssea/complicações , Hemoglobinúria Paroxística/genética , Transtornos da Insuficiência da Medula Óssea , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Condicionamento Pré-Transplante
16.
Hematology Am Soc Hematol Educ Program ; 2023(1): 548-555, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066926

RESUMO

The inherited bone marrow failure syndromes (IBMFS) are a heterogenous group of disorders caused by germline mutations in related genes and characterized by bone marrow failure (BMF), disease specific organ involvement, and, in most cases, predisposition to malignancy. Their distinction from immune marrow failure can often be challenging, particularly when presentations occur in adulthood or are atypical. A combination of functional (disease specific assays) and genetic testing is optimal in assessing all new BMF patients for an inherited etiology. However, genetic testing is costly and may not be available worldwide due to resource constraints; in such cases, clinical history, standard laboratory testing, and the use of algorithms can guide diagnosis. Interpretation of genetic results can be challenging and must reflect assessment of pathogenicity, inheritance pattern, clinical phenotype, and specimen type used. Due to the progressive use of genomics, new IBMFS continue to be identified, widening the spectrum of these disorders.


Assuntos
Anemia Aplástica , Doenças da Medula Óssea , Pancitopenia , Adulto , Humanos , Medula Óssea , Doenças da Medula Óssea/diagnóstico , Doenças da Medula Óssea/genética , Anemia Aplástica/diagnóstico , Anemia Aplástica/genética , Anemia Aplástica/terapia , Síndrome Congênita de Insuficiência da Medula Óssea , Transtornos da Insuficiência da Medula Óssea
17.
Front Immunol ; 14: 1194262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795094

RESUMO

The most common causes of congenital neutropenia are mutations in the ELANE (Elastase, Neutrophil Expressed) gene (19p13.3), mostly in exon 5 and the distal portion of exon 4, which result in different clinical phenotypes of neutropenia. Here, we report two pathogenic mutations in ELANE, namely, c.607G>C (p.Gly203Arg) and a novel variant c.416C>G (p.Pro139Arg), found in two Mexican families ascertained via patients with congenital neutropenia who responded positively to the granulocyte colony-stimulating factor (G-CSF) treatment. These findings highlight the usefulness of identifying variants in patients with inborn errors of immunity for early clinical management and the need to rule out mosaicism in noncarrier parents with more than one case in the family.


Assuntos
Neutropenia , Humanos , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Elastase de Leucócito/genética , Mutação , Neutropenia/congênito
18.
Biomolecules ; 13(8)2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37627314

RESUMO

Inherited bone marrow failure syndromes (IBMFSs) include Fanconi anemia, Diamond-Blackfan anemia, Shwachman-Diamond syndrome, dyskeratosis congenita, severe congenital neutropenia, and other rare entities such as GATA2 deficiency and SAMD9/9L mutations. The IBMFS monogenic disorders were first recognized by their phenotype. Exome sequencing has validated their classification, with clusters of gene mutations affecting DNA damage response (Fanconi anemia), ribosome structure (Diamond-Blackfan anemia), ribosome assembly (Shwachman-Diamond syndrome), or telomere maintenance/stability (dyskeratosis congenita). The pathogenetic mechanisms of IBMFSs remain to be characterized fully, but an overarching hypothesis states that different stresses elicit TP53-dependent growth arrest and apoptosis of hematopoietic stem, progenitor, and precursor cells. Here, we review the IBMFSs and propose a role for pro-inflammatory cytokines, such as TGF-ß, IL-1ß, and IFN-α, in mediating the cytopenias. We suggest a pathogenic role for cytokines in the transformation to myeloid neoplasia and hypothesize a role for anti-inflammatory therapies.


Assuntos
Citocinas , Disceratose Congênita , Humanos , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Citocinas/genética , Síndrome de Shwachman-Diamond/genética , Interferon-alfa , Peptídeos e Proteínas de Sinalização Intracelular
19.
Hamostaseologie ; 43(4): 252-260, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37611607

RESUMO

Thrombocytopenia absent radius (TAR) syndrome is a rare form of hereditary thrombocytopenia associated with a bilateral radial aplasia. TAR syndrome is genetically defined by the combination of a microdeletion on chromosome 1 which includes the gene RBM8A, and a single nucleotide polymorphism (SNP) in the second RBM8A allele. While most patients with TAR syndrome harbor a SNP in either the 5' UTR region or in intron 1 of RBM8A, further SNPs associated with TAR syndrome are still being identified. Here, we report on the current understanding of the genetic basis, diagnosis, and therapy of TAR syndrome and discuss patient self-empowerment by enabling networking and exchange between affected individuals and families.


Assuntos
Rádio (Anatomia) , Trombocitopenia , Humanos , Trombocitopenia/diagnóstico , Trombocitopenia/genética , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Íntrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...